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Abstract

Supervised domain-specific term extrac-
tion often suffers from two common prob-
lems, namely labourious manual feature
selection, and the lack of labelled data. In
this paper, we introduce a weakly super-
vised bootstrapping approach using two
deep learning classifiers. Each classifier
learns the representations of terms sep-
arately by taking word embedding vec-
tors as inputs, thus no manually selected
feature is required. The two classifiers
are firstly trained on a small set of la-
belled data, then independently make pre-
dictions on a subset of the unlabeled data.
The most confident predictions are subse-
quently added to the training set to retrain
the classifiers. This co-training process
minimises the reliance on labelled data.
Evaluations on two datasets demonstrate
that the proposed co-training approach
achieves a competitive performance with
limited training data as compared to stan-
dard supervised learning baseline.

1 Introduction

Domain-specific terms are essential for many
knowledge management applications, such as
clinical text processing, risk management, and
equipment maintenance. Domain-specific term
extraction aims to automatically identify domain
relevant technical terms that can be either uni-
gram words or multi-word phrases. Supervised
domain-specific term extraction often relies on the
training of a binary classifier to identify whether
or not a candidate term is relevant to the do-
main (da Silva Conrado et al., 2013; Foo and
Merkel, 2010; Nazar and Cabré, 2012). In such
approaches, term extraction models are built upon
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manually selected features including the local sta-
tistical and linguistic information (e.g. frequency,
co-occurrence frequency, or linguistic patterns),
and external information form third-party knowl-
edge bases (e.g. WordNet, DBpedia). Designing
and evaluating different feature combinations turn
the development of term extraction models into a
time-consuming and labor-intensive exercise. In
addition, these approaches require a large amount
of labelled training data to generalise the learning.
However, labelled data is often hard or impractical
to obtain.

In this paper, our first objective is to minimise
the usage of labelled data by training two clas-
sifiers in a co-training fashion. Co-training is
a weakly supervised learning mechanism intro-
duced by Blum and Mitchell (1998), which tack-
les the problem of building a classification model
from a dataset with limited labelled data among
the majority of unlabelled ones. It requires two
classifiers, each built upon separate views of the
data. Each view represents a separate set of man-
ually selected features that must be sufficient to
learn a classifier. For example, Blum and Mitchell
classify web pages based on words appearing in
the content of a web page, and words in hyper-
links pointing to the web page. Co-training starts
with training each classifier on a small labelled
dataset, then each classifier is used to predict a
subset of the unlabelled data. The most confident
predictions are subsequently added to the training
set to re-train each classifier. This process is it-
erated a fixed number of times. Co-training al-
gorithms have been applied to many NLP tasks
where labelled data are in scarce, including sta-
tistical parsing (Sarkar, 2001), word sense disam-
biguation (Mihalcea, 2004), and coreference reso-
lution (Ng and Cardie, 2003), which demonstrate
that it generally improves the performance without
requiring additional labelled data.

Our second objective is to eliminate the ef-
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fort of feature engineering by using deep learning
models. Applying deep neural networks directly
to NLP tasks without feature engineering is also
described as NLP from scratch (Collobert et al.,
2011). As a result of such training, words are rep-
resented as low dimensional and real-valued vec-
tors, encoding both semantic and syntactic fea-
tures (Mikolov et al., 2013). In our model, word
embeddings are pre-trained over the corpora to en-
code word features that are used as inputs to two
deep neural networks to learn different term repre-
sentations (corresponding to the concept of views)
over the same dataset. One is a convolutional neu-
ral network (CNN) to learn term representations
through a single convolutional layer with multiple
filters followed by a max pooling layer. Each filter
is associated with a region that essentially corre-
sponds to a sub-gram of a term. The underlying
intuition is that the meaning of a term can be learnt
from its sub-grams by analysing different combi-
nations of words. The other is a Long Short-Term
Memory (LSTM) network which learns the repre-
sentation of a term by recursively composing the
embeddings of an input word and the composed
value from its precedent, hypothesising that the
meaning of a term can be learnt from the sequen-
tial combination of each constituent word. Each
network connects to a logistic regression layer to
perform classifications.

Our model is evaluated on two benchmark
domain-specific corpora, namely GENIA (biol-
ogy domain) (Kim et al., 2003), and ACL RD-
TEC (computer science domain) (Handschuh and
QasemiZadeh, 2014). The evaluation shows
that our model outperforms the C-value algo-
rithm (Frantzi et al., 2000) that is often treated
as the benchmark in term extraction. We also
trained two classifiers using the standard super-
vised learning approach, and demonstrate that co-
training deep neural networks is an effective ap-
proach to reduce the usage of labelled data while
maintaining a competitive performance.

This paper is organised as follows. In Section 2,
we briefly review the related work. Section 3 in-
troduces our proposed model, and in Section 4 we
describe our evaluation datasets and discuss the
experimental results. Section 5 summarises our
study with an outlook to the future work.

2 Related Work

2.1 Supervised Term Extraction
Supervised machine learning approaches for
domain-specific term extraction start with candi-
date identification, usually by employing a phrase
chunker based on pre-identified part-of-speech
(POS) patterns, then uses manually selected fea-
tures to train a classifier. The feature may in-
clude linguistic, statistical, and semantic fea-
tures (Foo and Merkel, 2010; Nazar and Cabré,
2012; da Silva Conrado et al., 2013). The work
closely related to ours is Fault-Tolerant Learn-
ing (FTL) (Yang et al., 2010) inspired by Trans-
fer Learning (Ando and Zhang, 2005) and Co-
training (Blum and Mitchell, 1998). FTL builds
two support vector machine (SVM) classifiers us-
ing manually selected features, whereas our model
uses deep neural networks taking pre-trained word
embeddings as inputs, without using any manually
selected feature.

2.2 Learning Representations of Words and
Semantic Compositionality

Word embeddings are proposed to overcome the
curse of dimensionality problem by Bengio et
al. (2006), who developed a probabilistic neural
language model using a feed-forward multi-layer
neural network, which demonstrates how word
embeddings can be induced. Recently, Mikolov
et al. (2013) presented a shallow network architec-
ture that is specifically for learning word embed-
dings, known as the word2vec model. Their work
reveals that word embeddings are capable of rep-
resenting the meaning of words to a certain degree
through analogy test.

Semantic composition is to understand the
meaning of a multi-word expression by compos-
ing the meanings of each constituent word. For
example, given the word embeddings of pet and
doctor, the compositional representation of pet
doctor is expected to have the high cosine sim-
ilarity or small Euclidian distance to the vector
of veterinarian. Such characteristics help classi-
fiers to recognise the semantically related expres-
sions or equivalent counterparts of a term, which
offers significant advantages for term extraction.
Popular deep neural networks for modelling se-
mantic compositionality include convolutional, re-
current, recursive, and hybrid networks. Kim
(2014) reported a number of experiments of ap-
plying a convolutional network with one single

115



Word 
Embeddings 
Lookup Table

Convolution & 
max pooling 

Input Layer

Labelled Data L

Logistic 
Regression Layer

Pool U’

Word 
Embeddings 
Lookup Table

Input Layer

LSTM Layer 

Logistic 
Regression Layer

Unlabelled Data U

Train Train

Examples for labelling

Refill 2g examples

Add g most confident predictions Add g most confident predictions

Figure 1: Co-training Network Architecture
Overview: Solid lines indicate the training pro-
cess, dashed lines indicate prediction and labelling
processes.

convolutional and 1-Max pooling layer for Senti-
ment Analysis and Topic Categorisation tasks pro-
ducing the state-of-the-art performance on 4 out
of 7 datasets, which shows the power of the con-
volutional architecture. Recurrent neural network
is efficient on encoding sequential combinations
of data with various lengths, which naturally of-
fers an advantage for capturing semantic compo-
sitionality of multi-word terms. Using recurrent
neural networks modelling natural languages and
their long-term dependencies was attempted by
Mikolov et al. (2010). More recently, Sutskever
et al. (2014) use LSTM network, and Cho et al.
(2014) use Gated Recurrent Unit (GRU) network
to encode and decode the semantic composition-
ality of sentences for machine translation. Chung
et al. (2015) propose an even deeper architecture
named Gated Feedback Recurrent network that
stacks multiple recurrent layers for character-level
language modelling. Other network architectures
for learning semantic compositionality include re-
cursive networks (Socher et al., 2010; Socher et
al., 2012), which require using POS tagging texts
to produce syntactical tree structures as a prior.
Hybrid networks, such as recurrent-convolutional
network (Kalchbrenner and Blunsom, 2013; Lai et
al., 2015), are designed for capturing document-
level semantics.

3 Proposed Model

The model consists of two classifiers, as shown in
Figure 1. The left classifier is a CNN network,

and the right one is a LSTM network. Both net-
works take pre-trained word embedding vectors as
inputs to learn the representations of terms inde-
pendently. The output layer is a logistic regression
layer for both networks. Two neural networks are
trained using the Co-training algorithm.

The Co-training algorithm requires two separate
views of the data, which traditionally are two sets
of manually selected features. In our model, how-
ever, there is no manually selected features. Thus,
two views of the data are carried by our two hy-
potheses of learning the meaning of terms. The
meaning of a term can be learnt by 1) analysing
different sub-gram compositions, and 2) sequen-
tial combination of each constituent word. The hy-
potheses are implemented via the CNN and LSTM
network. We expect that the rules of composing
words can be captured by the networks. The CNN
network analyses different regions of a input ma-
trix that is constructed by stacking word embed-
ding vectors, as shown in Figure 2, where the size
of regions reflect different n-grams of a term. By
scanning the embedding matrix with different re-
gion sizes, we expect that the CNN network can
learn the meaning of a term by capturing the most
representative sub-gram. The LSTM network, on
the other hand, learns the compositionality by re-
cursively composing an input embedding vector
with the precedent or previously composed value,
as shown in Figure3. We expect the LSTM net-
work to capture the meaning of a term through its
gates that govern the information flow – how much
information (or meaning) of an input word can be
added in to the overall meaning, and how much in-
formation should be dismissed from the previous
composition.

3.1 Term Representation Learning

The objective is to learn a mapping function f that
outputs the compositional representation of a term
given its word embeddings. Concretely, let V be
the vocabulary of a corpus with the size of v. For
each word w ∈ V , there is a corresponding d di-
mensional embedding vector. The collection of
all embedding vectors in the vocabulary is a ma-
trix, denoted as C, where C ∈ Rd×v. C can be
thought of as a look-up table, where C(wi) rep-
resents the embedding vectors of word wi. Given
a term s = (w1, w2, ..., wn), the goal is to learn
a mapping function f(C(s)) that takes the indi-
vidual vector representation of each word as in-
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Figure 2: Convolutional Model

puts, and output a composed value that represent
the compositional meaning of s.

3.1.1 Convolutional Model
We adopt the CNN network used by Kim (2014),
and Zhang and Wallace (2015), which has only
one convolutional layer, shown in Figure 2. The
inputs C(s) to the network are vertically stacked
into a matrix M , where the rows are word em-
beddings of each w ∈ s. Let d be the length of
word embedding vectors, and l be the length of a
term, then M has the dimension of d× l where d
and l are fixed. We pad zero vectors to the ma-
trix if the number of tokens of an input term is
less than l. The convolutional layer has r pre-
defined regions, and each region has n filters. All
regions have the same width d, because each row
in the input matrix M represents a word and the
goal is to learn the composition of them. However,
the regions have various heights h, which can be
thought of as different n-gram models. For exam-
ple, when h = 2, the region is to represent bi-
gram features. Let W be the weights of a filter,
where W ∈ Rd×h. The filter outputs a feature
map c = [c1, c2, ..., cl−h+1], and ci is computed
as:

ci = f(W ·M [i : i+ h− 1] + b) (1)

where M [i : i+ h− 1] is a sub-matrix of M from
row i to row i + h − 1, f is an activation func-
tion – we use hyperbolic tangent in this work, and
b is a bias unit. A pooling function is then ap-
plied to extract values from the feature map. We
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use the 1-Max pooling as suggested by Zhang and
Wallace (2015) who conduct a sensitivity analy-
sis on one-layer convolutional network showing
that 1-Max pooling consistently outperforms other
pooling strategies in sentence classification task.
The total number of feature maps in the network
is m = r × n, so the output from the max pooling
layer y ∈ Rm is computed as:

y =
m

max
i=1

(ci) (2)

3.1.2 LSTM Model
We use a LSTM network that is similar to the
vanilla LSTM (Greff et al., 2015) without peep-
hole connections, shown in Figure 3. The LSTM
network features memory cells at each timestamp.
A memory cell is to store, read and write informa-
tion passing through the network at a timestamp t,
which consists of four elements, an input gate i,
a forget gate f , a candidate g for the current cell
state value, and an output gate o. At t, the inputs to
the network are the previous cell state value ct−1,
the previous hidden state value ht−1 , and the input
value xt. The outputs are current cell state ct and
the current hidden state value ht, which will pass
to the next timestamp t + 1. At time t, the candi-
date g for the current cell state value compose the
newly input xt and the previously composed value
ht−1 to generate a new state value as:

gt = tanh(Wg · xt + Ug · ht−1 + bg) (3)

where Wg and Ug are shared weights, and bi is the
bias unit.
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The input gate i in the LSTM network decides
how much information can pass through from gt
to the actual computation of the memory cell state

using a sigmoid function σ =
1

1 + e−x
that out-

puts a value between 0 and 1 indicating the per-
centage, as:

it = σ(Wi · xt + Ui · ht−1 + bi) (4)

where Wi and Ui are shared weights, and bi is the
bias unit. Likewise, the forget gate f governs how
much information to be filtered out from the pre-
vious state ct−1:

ft = σ(Wf · xt + Uf · ht−1 + bf ) (5)

The new cell state value is computed as taking a
part of information from the current inputs and the
previous cell state value:

ct = it ⊗ gt + ft ⊗ ct−1 (6)

where⊗ is the element-wise vector multiplication.
ct will be passed to the next timestamp t+1, which
remains constant from one timestamp to another,
representing the long-short term memory.

The output gate o can be thought of as the filter
that prevents any irrelevant information that may
be passed to the next state. The output gate ot and
the hidden state value ht are computed as:

ot = σ(Wo · xt + Uo · ht−1 + bo)

ht = ot ⊗ tanh(ct)
(7)

where ht is the composed representation of a word
sequence from time 0 to t.

3.2 Training Classifier
To build the classifiers, each network is connected
to a logistic regression layer for the binary clas-
sification task – we are only concerned whether
a term is domain relevant or not. The logistic re-
gression layer, however, can be simply replaced by
a softmax layer for multi-class classification tasks,
such as Ontology Categorisation.

Overall, the probability that a term s is relevant
to the domain is:

p(s) = σ(W · f(C(s)) + b) (8)

where σ is the sigmoid function, W is the weights
for logistic regression layer, b is the bias unit, and
f is the mapping function that is implemented by
the CNN or the LSTM network.

The parameters of convolutional classifier are
θ = (C, W conv, bconv, W convlogist, bconvlogist)
where W conv are weights for all m filters, and
bconv is the bias vectors. For LSTM classifier, θ =
(C, W lstm, blstm, W lstmlogist, blstmlogist) where
W lstm = (Wi, Wg, Wf , Wo, Ui, Ug, Uf , Uo), and
blstm = (bi, bg, bf , bo). Given a training set D, the
learning objective for both of the classifiers is to
maximise the log probability of correct labels for
s ∈ D by looking for parameters θ:

argmax
θ

∑
s∈D

log p(slabel|s; θ) (9)

θ is updated using stochastic gradient descent
(SGD) to minimise the negative log likelihood er-
ror:

θ := θ − ε∂ log p(slabel|s; θ)
∂θ

(10)

where ε is the learning rate.

3.3 Pre-training Word Embedding
We use the SkipGram model (Mikolov et al.,
2013) to learn word embeddings. Given a word
w, the SkipGram model predicts the context (sur-
rounding) words S(w) within a pre-defined win-
dow size. Using the softmax function, the proba-
bility of a context word s ∈ S is:

p(s|w) = ev
′
w
>·vs∑V

t=1 e
v′t
>·vs

(11)

where V is the vocabulary, v′w is the output vector
representations for w, vs is the input vector repre-
sentations for contexts s, respectively. The learn-
ing objective is to maximise the conditional prob-
ability distribution over vocabulary V in a training
corpus D by looking for parameters θ:

argmax
θ

∑
w∈D

∑
s∈S(w)

log p(s|w; θ) (12)

3.4 Co-training Algorithm
Given the unlabelled data U , a pool U ′ of size

p, and a small set of labelled data L, firstly each
classifier c ∈ C are trained over L. After train-
ing, the classifiers make predictions on U ′, then
choose the most confident g predictions from each
classifier and add them to L. The size of U ′ now
becomes p − 2g, and L := L + 2g. U ′ then is re-
filled by randomly selecting 2g examples from U .
This process iterates k times. Algorithm 1 docu-
ments the details.
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Algorithm 1 Co-training

Input: L,U,C, p, k, g
create U ′ by randomly choosing p example
from U
while iteration < k do

for c ∈ C do
use L to train C

end for
for c ∈ C do

use c to posit label in U ′

add most confident g example to L
end for
refill U ′ by randomly choosing 2×g example
from U

end while

4 Experiments

4.1 Datasets

We evaluate our model on two datasets. The first
dataset is the GENIA corpus1. The current Version
3.02 is a collection of 1,999 article abstracts in the
field of molecular biology including 451,562 to-
kens and 30,893 ground truth terms. The second
dataset is the ACL RD-TEC corpus2, which con-
sists of 10,922 articles published between 1965 to
2006 in the domain of computer science. The ACL
RD-TEC corpus classifies terms into three cate-
gories, invalid terms, general terms, and compu-
tational terms. We only treat computational terms
as ground truth in our evaluation. The dataset has
36,729,513 tokens and 13,832 ground truth terms.

4.2 Preprocessing

We firstly clean the datasets by extracting text
content and ground truth terms, removing plurals
of nouns, and converting all tokens into lower-
cases. The ACL RD-TEC corpus provides a pre-
identified candidate list, so we only need to iden-
tify candidate terms from the GENIA corpus. We
build two candidate identifiers. The first identi-
fier uses noun phrase chunking with pre-defined
POS patterns, we call it POS identifier. We use
a common POS pattern <JJ>*<NN.*>+, that is,
a number of adjectives followed by a number of
nouns. The second identifier uses n-gram based
chunking, so called N-gram identifier, which de-
composes a sequence of words into all possible n-

1publicly available at http://www.geniaproject.org/
2publicly available at https://github.com/languagerecipes/the-

acl-rd-tec

grams. However, there would be too many candi-
dates if we simply decompose every sentence into
all possible n-grams. Thus, we use stop-words as
delimiters to decompose any expression between
two stop-words into all possible n-grams as can-
didates. For example, novel antitumor antibiotic
produces 6 candidates, novel antitumor antibiotic,
novel antitumor, antitumor antibiotic, novel, anti-
tumor, and antibiotic.

4.3 Experiment Settings

The co-training requires a few parameters. We set
the small set of labelled data L = 200 and the
size for the pool U ′ 500 for all evaluations. The
number of iterations k is 800 for POS identified
candidates, 500 for N-grams identified candidates
in the GENIA dataset, 500 for the ACL RD-TED
dataset. The growth size is 20 for POS, 50 for N-
grams, and 20 for ACL RD-TED. The evaluation
data is randomly selected from candidate sets. For
each e in the evaluation set E, e /∈ L. Table 1
show the class distributions and statistics.

All word embeddings are pre-trained with 300
dimensions on each corpus. The maximum length
of terms is 13 on GENIA and 5 on ACL RD-TED,
therefore the CNN classifier has 5 different region
size , {2, 3, 4, 5, 6} for GENIA and 3 region size
{2, 3, 4} for ACL RD-TED. Each region has 100
filters. There are no specific hyper-parameters re-
quired for training the LSTM model. The learning
rate for SGD is 0.01.

The model was trained in an online fashion.
We trained our model on a NVIDIA GeForce 980
TI GPU. The training time linearly increases at
each iteration, since the model incrementally adds
training examples into the training set. At the be-
ginning, it only took less than a second for one
iteration. After 100 iterations, the training set was
increased by 1,820 examples that took a few sec-
onds to train. Thus the training time is not critical
– even the standard supervised training only took
a few hours to converge.

4.4 Evaluation Methodology

We use precision = TP
TP+FP , recall = TP

TP+FN ,
F = 2 × precision×recall

precision+recall and accuracy =
TP+TN

TP+FP+FN+TN for our evaluation. We illustrate
the set relationships of true postive (TP) , true neg-
ative (TN), false postive (FP), and false negative
(FN) in Figure 4.
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Table 1: Evaluation Dataset Statistics

Test Examples Positive Negative
GENIA POS 5,000 2558 (51.0%) 2442 (49.0%)
GENIA N-gram 15,000 1,926 (12.8%) 13,074 (87.2%)
ACL RD-TEC 15,000 2,416 (16.1%) 12,584 (83.9%)

All Possible 
Grams

Candidate
Set

Ground
Truth Set

Evaluation
Set

Classified
Positive

Classified
Negative

FP

TP

FN
TN

Unidentified
Ground Truth

Figure 4: Relationships in TP, TN, FP, and FN for
Term Extraction.

4.5 Result and Discussion

We use C-value (Frantzi et al., 2000) as our base-
line algorithm. C-value is an unsupervised rank-
ing algorithm for term extraction, where each can-
didate term is assigned a score indicating the de-
gree of domain relevance. We list the performance
of C-value by extracting top scored terms. Since
we treat the task as a binary classification task, we
also list random guessing scores for each dataset,
where recall and accuracy scores are always 50%
and precisions correspond to the distribution of
positive class of each evaluation set. As a com-
parison to the Co-training model, we also trained
each classifier individually using the standard su-
pervised machine learning approach. The train-
ing is conducted by dividing the candidate set into
40% for training, 20% for validation, and 40% for
evaluation. For Co-training model, we found that
the CNN classifier outperforms the LSTM classi-
fier in all the evaluation, so we only present the
performance of the CNN classifier, as shown in
Table 2.

The supervised approach unsurprisingly pro-
duces the best results on all evaluation sets. How-
ever, it uses much more labelled data than the Co-
training model, while delivering only 2 percent
better performance (F-score) on the GENIA cor-
pus, and 6 percent on the ACL RD-TEC corpus. In
comparison to standard supervised machine learn-
ing approach, Co-training is more “cost-effective”
since it only requires 200 labelled data as seed

terms.
On the GENIA corpus, all algorithms produce

much better F-score for the POS evaluation set.
This is because of different class distributions –
on the POS evaluation set, the proportion of pos-
itive (ground truth) terms is 50.5% whereas only
12.8% positive terms in the N-gram evaluation set.
Therefore, we consider that the results from POS
and N-gram evaluation sets are not directly com-
parable. However, the actual improvements on
F-score over random guessing on both evaluation
sets are quite similar, suggesting that evaluating
performance of a classifier should not only con-
sider the F-score, but should also analyse the ac-
tual improvement over random guessing.

It is also interesting to note that the GENIA
N-gram evaluation set has 12.8% positive exam-
ples, which has similar unbalanced class distri-
bution as ACL RD-TED, 16.1% positives. How-
ever, all algorithms produce much better perfor-
mance on the ACL RD-TEC corpus. We found
that in the ACL RD-TEC corpus, the negative
terms contain a large number of invalid charac-
ters (e.g.˜), mistakes made by the tokeniser (e.g.
evenunseeneventsare), and none content-
bearing words (e.g. many). The classifiers can
easily spot these noisy data. Another reason might
be that the ACL RD-TEC corpus is bigger than
GENIA, which not only allows C-value to produce
better performance, but also enables the word2vec
algorithm to deliver more precise word embed-
ding vectors which are required inputs to our deep
learning model.

Although the accuracy measure is commonly
used in classification tasks, it does not reflect the
true performance of a model when classes are not
evenly distributed in an evaluation set. For ex-
ample, on the N-gram evaluation set, the positive
examples are about 12.8% whereas the negative
examples are about 87.2%. At the beginning of
the training, both models tend to classify most of
the examples as negative thus the accuracy score is
close to 87%. While the training progress, the ac-
curacy starts dropping. However, it is still difficult
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Table 2: Evaluation Results

Labelled Data Precision Recall F-score Accuracy
GENIA POS
Random Guessing – 51% 50% 50.5% 50%
C-value (Top 1000) – 62.4% 24.4% 35.1% –
C-value (Top 2500) – 53.7% 52.5% 53.1% –
Supervised 16,400 64.7% 78.0% 70.7% 67.1%
Co-training 200 64.1% 76.0% 69.5% 65.5%
GENIA N-gram
Random Guessing – 12.8% 50% 20.4% 50%
C-value (Top 2500) – 12.9% 16.7% 14.6% –
C-value (Top 7500) – 11.4% 44.3% 18.1% –
Supervised 91,924 35.0% 59.1% 44.0% 81.4%
Co-training 200 34.3% 56.6% 42.7% 75.5%
ACL RD-TEC
Random Guessing – 16.1% 50% 24.4% 50%
C-value (Top 2500) – 14% 14.6% 14.3% –
C-value (Top 7500) – 21.8% 68.2% 33.3% –
Supervised 33,538 70.8% 67.7% 69.2% 85.2%
Co-training 200 66% 60.5% 63.1% 79.7%
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Figure 5: Performance on Ngram evaluation set

to understand how exactly the model performs ac-
cording to the accuracy score. On the other hand,
because the classes are evenly distributed on POS
evaluation set, we can clearly identify how the ac-
curacy measure corresponds to F-scores.

The CNN classifier outperforms the LSTM on
all evaluation sets. It also requires much fewer
iterations to reach the best F-score. We plot F-
score for both classifiers over a few hundreds iter-
ations on the GENIA corpus, shown in Figure 5
and 6. Both classifiers reach their best perfor-
mance within 100 iterations. For example, the
CNN classifier on POS evaluation set, produced
a good F-score around 62% at just about 30 itera-
tions, then reached its best F-score 69.5% after 91
iterations. However, the size of the training set is
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Figure 6: Performance on POS evaluation set

still quite small – by 91 iterations, the training set
only grows by 1,820 examples. This phenomenon
leads us to consider two more questions 1) what
is the exact performance boosted by Co-training?
2) How different numbers of training examples af-
fect the performance of a deep learning model, and
do deep learning models still need large amount of
labelled training examples to produce the best per-
formance? In the rest of the paper, we will answer
the first question, and leave the second question
for our future work.

To investigate how Co-training boosts the per-
formance of classifiers, we trained our model us-
ing only 200 seed terms over 800 iterations, results
are shown in Figure 7. The best F-score is from
the convolutional model, about 53%, just slightly

121



0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 100	 200	 300	 400	 500	 600	 700	 800	

F-
sc
or
e	

Itera,on	

Training	on	200	Examples	GENIA	POS	Dataset	

Convolu3onal	Model	

LSTM	Model	

Figure 7: Convolutional and LSTM Classifier
Training on 200 Examples on POS Evaluation set

higher than random guessing. On the other, by ap-
plying Co-training we obtain the best F-score of
69.5% which is a 16.5% improvement. In fact,
the improvement achieved by just adding a small
number of training examples to the training set
was also report by (Clark et al., 2003). Con-
sequently, it is clear that our co-training model
is an effective approach to boost the performance
of deep learning models without requiring much
training data.

5 Conclusion

In this paper, we have shown a deep learning
model using Co-training – a weakly supervised
bootstrapping paradigm, for automatic domain-
specific term extraction. Experiments show that
our model is a “cost-effective” way to boost the
performance of deep learning models with very
few training examples. The study also leads to
further questions such as how the number of train-
ing examples affects the performance of a deep
learning model, and whether deep learning mod-
els still need as many labelled training examples as
required in other machine learning algorithms to
reach their best performance. We will keep work-
ing on these question in the near future.
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